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Background: Current miRNA target prediction tools have the common problem that
their false positive rate is high. This renders identification of co-regulating groups of
miRNAs and target genes unreliable. In this study, we describe a procedure to iden-
tify highly probable co-regulating miRNAs and the corresponding co-regulated gene
groups. Our procedure involves a sequence of statistical tests: (1) identify genes that
are highly probable miRNA targets; (2) determine for each such gene, the minimum
number of miRNAs that co-regulate it with high probability; (3) find, for each such
gene, the combination of the determined minimum size of miRNAs that co-regulate
it with the lowest p-value; and (4) discover for each such combination of miRNAs, the
group of genes that are co-regulated by these miRNAs with the lowest p-value computed
based on GO term annotations of the genes. Results: Our method identifies 4, 3 and
2-term miRNA groups that co-regulate gene groups of size at least 3 in human. Our result
suggests some interesting hypothesis on the functional role of several miRNAs through
a “guilt by association” reasoning. For example, miR-130, miR-19 and miR-101 are
known neurodegenerative diseases associated miRNAs. Our 3-term miRNA table shows
that miR-130/19/101 form a co-regulating group of rank 22 (p-value = 1.16 × 10−2).
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Since miR-144 is co-regulating with miR-130, miR-19 and miR-101 of rank 4 (p-value =
1.16 × 10−2) in our 4-term miRNA table, this suggests hsa-miR-144 may be neurode-

generative diseases related miRNA. Conclusions: This work identifies highly prob-
able co-regulating miRNAs, which are refined from the prediction by computational
tools using (1) signal-to-noise ratio to get high accurate regulating miRNAs for every
gene, and (2) Gene Ontology to obtain functional related co-regulating miRNA groups.
Our result has partly been supported by biological experiments. Based on prediction
by TargetScanS, we found highly probable target gene groups in the Supplementary
Information. This result might help biologists to find small set of miRNAs for genes
of interest rather than huge amount of miRNA set. Supplementary Information:
https://www.deakin.edu.au/˜phoebe/JBCBAnChen/JBCB.htm

Keywords: microRNA; co-regulating; target gene.

1. Background

MicroRNAs (miRNAs) are a type of endogenous regulatory RNAs approximately
22 nucleotides in length. miRNAs perform post-transcriptional inhibition on target
genes. More than 4000 miRNAs have been identified in eukaryotes and one-third
of human genes are likely to be regulated by miRNAs.1 Due to difficulty in iden-
tifying target genes of miRNAs experimentally, computational methods are often
used to predict target genes. Prominent among these methods are TargetScanS,2,3

MiRanda,1 DIANA-microT,4 PicTar,5 TarBase6 and MicroTar.7 The following
three main criteria are employed in these methods: (1) a miRNA should have com-
plementary binding sites in the 3′UTR of its target genes; (2) the interaction of
a miRNA and its target gene should result in lower free energy than a threshold
value; and (3) a target gene should have conserved regions in the 3′UTR sequences
of near species. Note that MicroTar7 does not consider evolutionary conservation:
it uses only criteria (1) and (2) to predict miRNA’s target genes. Furthermore,
these prediction tools may produce different target sets8,9 for the same given set of
miRNAs.

Several miRNAs may work together to suppress a group of functionally related
genes.9,10 A group of miRNAs are said to be co-regulating if they regulate some
genes in common. The interaction between miRNAs and mRNA involves a complex
process.11 The regulation of mRNA by miRNAs could happen in two ways, as
illustrated in Fig. 1: (1) several miRNAs regulate mRNAs coordinately to perform
one function; or (2) different miRNAs regulate mRNAs to perform more than one
function simultaneously.

Prediction tools such as TargetScanS and MiRanda can be used to identify
potential target genes for all miRNAs. Yoon and Micheli in Ref. 12 have proposed a
biclique-based method to find co-regulating groups of miRNAs and mRNAs. Joung
et al. in Ref. 13 have described a population-based co-evolutionary learning method
to find miRNA–mRNA models. There is room for improvement in the precision of
these prediction tools. For example, TargetScanS has a signal-to-noise ratio of 2.4:1
on human sequences with mouse, rat, chicken and dog orthologs, which is equal
to a precision of (2.4 − 1)/2.4 = 58.3%. If we predict co-regulating miRNA groups
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Fig. 1. Multiple miRNAs regulate one mRNA with complementary binding. (a) The two miRNAs
have complementary binding sites in an mRNA. The shadow rectangles represent binding parts.
(b) Two active miRNAs regulate an mRNA coordinatively. (c) Two miRNAs regulate the same
mRNA simultaneously.

based on combinations of miRNAs individually predicted at such a precision level,
the precision of the predicted co-regulating groups is going to be low. For example,
the precision of predicted miRNA combinations of size 3 becomes 58.3%3 = 19.8%.

In this paper, we start from a set of human miRNA–gene pairs predicted by
TargetScanS. Then we develop a sequence of statistical analyses to (1) select
genes that have at least 99.9% probability of being targets of some miRNAs;
(2) determine for each selected gene the minimum number of miRNAs that have
at least 99.9% probability of co-regulating it; (3) identify for each selected gene
the combination of miRNAs of the determined minimum size that co-regulate
the gene at the lowest p-value; and (4) find for each such combination of co-
regulating miRNAs the group of genes that are co-regulated by these miRNAs
at a p-value less than 0.01 based on coherence of the Gene Ontology (GO) terms
annotated to these genes. As a result of our analysis, we produce human miRNA
co-regulating tables in terms of the number of miRNAs. Four tables (4+-term,
3-term, 2-term and 1-term) can be found in the Supplementary Information avail-
able at https://www.deakin.edu.au/˜phoebe/JBCBAnChen/JBCB.htm, which is a
Microsoft Excel file. The tables are shown in different Excel Sheets named “miRNA
& targets(4+)”, “miRNA & targets(3)”, “miRNA & targets(2)” and “miRNA &
targets(1)”. Note that highly homologous genes have been removed to avoid forming
co-regulated gene groups among themselves because they have similar 3′UTRs.

Our proposed procedure has a number of advantages over existing methods.
For example, while Joung et al.13 take into account expression of miRNAs and
mRNAs, they do not consider biological function. More importantly, most miR-
NAs inhibit protein production but do not change the mRNA expression levels.
Moreover, gene expression levels are tissue-specific. Therefore, to find real targets
of miRNAs, Gene Ontology information is more suitable than mRNA expression
data, because gene association construction in Gene Ontology is based on protein
expression level. In this paper, we take biological function into account when we
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compute the p-value of our co-regulated gene groups based on the coherence of the
GO terms annotated to the genes. As another example, the biclique-based MRM
method of Ref. 12 finds miRNA groups heuristically and uses GO to validate the
finding. Due to its heuristic nature, it may miss miRNA groups or gene groups that
have high probability of being co-regulated. In contrast, our procedure retains all
highly probable co-regulation groups.

2. Method

A simple-minded approach to genome-wide identification of miRNA–gene
co-regulation group pairs is as follows. First, apply a computational miRNA tar-
get prediction tool like TargetScanS on a genome-wide basis to obtain an initial
miRNA–gene pairs map R = {(Y, X)| the miRNA Y is predicted by TargetScanS
to target gene X}, which can be derived straightforwardly from the 3227 × 162
matrix mentioned in the following subsection“Data”. Then compute the anti-chain
S = max{(M, G)| for all Y1 ∈ M , for all Y2 ∈ M , for all X1 ∈ G, for all X2 ∈ G,
(Y1, X1) ∈ R, (Y1, X2) ∈ R, (Y2, X1) ∈ R, (Y2, X2) ∈ R}. (Here we have used
standard set comprehension notations: M ranges over subsets of miRNAs, and G

ranges over subsets of target genes predicted by TargetScanS. Recall an anti-chain
of an ordered set S is a subset A containing the maximal elements of S.)

However, given the poor signal-to-noise performance of TargetScanS, the false-
positive level of miRNA–gene co-regulation group pairs derived in this simple-
minded way is unacceptably high. In fact, given such a co-regulation group pair
(M, G), its probability of containing at least one pair (Y, X) ∈ M × G that is
not co-regulated is 1 − p|M×G|, where p = 58.3% is the reported precision of Tar-
getScanS.3 For example, if |M | = |G| = 4, the chance of (M, G) containing at least
one miRNA–gene pair that is not co-regulated is 1 − 58.3%16 = 99.98%.

Therefore, we need a more stringent approach to derive the miRNA-gene
co-regulation group pairs from the basic miRNA-gene pairs map R produced by
TargetScanS. We introduce below a sequence of statistical tests for this purpose.

2.1. Data

The miRNA sequences are obtained from Rfam.a MiRNAs conserved in human,
mouse, rat, chicken and dog are clustered into 162 families based on miRNA seed
region (nucleotides 2–8). Some families consist of many miRNAs. For example, miR-
15/16/195/424/497 have the same seed “AGCAGCA”. Human gene sequences are
obtained from RefSeq, and orthologous sequences in human, mouse, rat, chicken
and dog are taken from the UCSC genome browser multiZ mulitple genome
alignments.14

The predicted miRNA targets from TargetScanS2,3 have 15,825 pairs between
miRNAs and target genes for conserved miRNAs and genes in human, mouse, rat,

ahttp://www.sanger.ac.uk/software/Rfam
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chicken and dog. This data can be downloaded from TargetScanS.b We rearranged
the data into a 3227 × 162 matrix, whose rows correspond to genes and columns
correspond to miRNA families. The elements of the matrix represent the number of
binding sites. If there is no regulation relationship between a miRNA family and a
gene, the corresponding element in the matrix is set to be 0; otherwise, the element
is set to be the number of binding sites.

2.2. Architecture of our method

Figure 2 shows the procedure of identifying co-regulating miRNA groups. Ovals
represent datasets and rectangles represent the procedures. The Perl source code
of TargetScanS was kindly provided to us by Lewis laboratory.

Fig. 2. A flow chart for identifying highly probable co-regulation miRNA–gene group pair.

bhttp://genes.mit.edu/tscan/targetscanS2005.html
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By executing TargetScanS, target genes are predicted for each miRNA. Since
the target genes include a large amount of false positives, a filtering procedure, as
described in the following Step 1.1 and 1.2, is needed. After the filtering procedure,
the miRNAs and their targets are guaranteed at 99.9% accuracy. This procedure
can be divided into two steps. Firstly, for each gene we estimate the number of
miRNAs that are really targeting the gene as described in the following Step 2.
Secondly, to find most probable real regulating miRNAs for each gene, we have to
find the “best” one. Here, best is in the sense that it is the most unlikely combination
to occur by chance, i.e. it has the smallest p-value whose details can be found in
the following Step 3. In the last procedure, we find the combinations of miRNAs
that are regulating common target genes. These common target genes are validated
using GO. It is based on the hypothesis that miRNA’s co-regulated genes usually
have coherent functions. The identified co-regulating miRNAs have not only high
accuracy in individual miRNA and its target genes, but also the target genes are
functionally related.

Step 1.1. How many predicted regulating miRNAs are needed for us to
believe a gene to be a real miRNA target?

The signal-to-noise ratio of TargetScanS on orthologous human, mouse, rat, chicken
and dog sequences is 2.4:1.3 That is, there is 1 false-positive prediction for every
2.4 predictions on average. So when TargetScanS predicts that a miRNA Y reg-
ulates a gene X , the probability p that the gene X is really regulated by the
miRNA Y is (2.4 − 1)/2.4 = 58.3%. It follows that, when TargetScanS pre-
dicts that a gene X is regulated by a group of n miRNAs, the probability that
the gene X is really the target of at least one of these n miRNAs is Pn =
Prob(X is a miRNA target|n miRNAs match X) = 1 − (1 − p)n. For example,
P1 = 58.3%, P2 = 82.6%, P3 = 92.7%, P4 = 97%, P5 = 98.7% and P8 = 99.9%.

Therefore, a human gene X with orthologs in mouse, rat, chicken and dog that
is predicted by TargetScanS to have at least eight distinct miRNA target sites
has a 99.9% chance of being a real miRNA target. Although some miRNAs have
multiple target sites in one target gene, we consider one target gene for multiple
target sites conservatively. So if we define RX = {Y |(Y, X) ∈ R}, we first obtain a
more reliable set R′ = {(Y, X) ∈ R||RX | ≥ 8} of miRNA–gene pairs by restricting
the initial miRNA–gene pairs map R to those genes that are the target of at least
eight distinct miRNAs.

Step 1.2. How many predicted regulating miRNAs are needed for us to
believe a gene to be really co-regulated by k miRNAs?

If TargetScanS predicts n miRNAs to target a human gene X with orthologs
in mouse, rat, chicken and dog, the probability that gene X is indeed co-
regulated by at least two of these n miRNAs is P2,n = Prob(X is co-regulated by
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at least 2 miRNAs|n miRNAs match X) = 1 − (1 − p)n − np(1 − p)n−1, where
p = 58.3% is the precision of TargetScanS mentioned in Step 1.1. For example,
P2,2 = 34%, P2,3 = 62.3%, P2,4 = 80.1%, P2,12 = 99.95%. Thus a human gene X

with orthologs in mouse, rat, chicken and dog that is matched by 12 miRNAs is
likely to be co-regulated by at least two miRNAs with probability 99.9%. However,
we do not know which two miRNAs among the 12 miRNAs really co-regulate X .

In general, if TargetScanS predicts n miRNAs to target a human gene X

with orthologs in mouse, rat, chicken and dog, the probability that gene X

is indeed co-regulated by at least k of these n miRNAs is Pk,n = Prob
(X is co-regulated by at least k miRNAs|n miRNAs match X) = 1 − ∑k−1

i=0

(
n
i

)

pi(1 − p)n−i. Given a threshold value for Pk,n, we can estimate the maximum
number k of miRNAs that co-regulate a gene X that has n predicted regulating
miRNAs.

For this paper, we set the threshold on Pk,n to 99.9%. Then we compute for
each gene X selected in Step 1.1 that is predicted to have n co-regulating miRNAs
by TargetScanS, the number k of co-regulating miRNAs that X can be assumed to
have at 99.9% probability.

Step 2. Which k miRNAs most likely co-regulate a given gene?

It is reasonable to postulate that a pair of miRNAs Y1 and Y2 that are predicted
to regulate a large number of genes in common are more likely to be co-regulating.
We can assess the chance of such a co-regulation by a hypergeometric p-value,
pval(Y1, Y2) =

∑
z≥z0

P (z| n, y1, y2) =
∑

z≥z0

(
n
z

)(
n−z
y1−z

)(
n−y1
y2−z

)
/
(

n
y1

)(
n
y2

)
, where z0

is the number of genes that are predicted as targets of both Y1 and Y2, and yi is
the number of genes that are predicted as targets of Yi (i = 1, 2), and n is the total
number of genes considered that are miRNA targets.c

To generalize the hypergeometric p-value to more than two miRNAs is com-
plicated. The probability that k miRNAs {Y1, . . . , Yk} sharing at least z0 com-
mon targets out of y1, . . . , yk targets can be shown to be no greater than(

n
z0

) ∏k
i=1

(
n−z0
yi−z0

)
/
(

n
yi

)
. We denote this expression by Pval(Y1, . . . , Yk) which esti-

mates the actual p-value conservatively. Furthermore, the same expression was also
used by Wu et al. (2003)15 to provide a p-value for genome phylogenetic profiles.

Of n miRNAs that are predicted to regulate a given gene X from Step 1.1, we
want to obtain k miRNAs that are most likely to co-regulate gene X . The value
of k is calculated as the largest value so that Pk,n ≥ 99.9%, as per Step 1.2. After
the value of k is calculated, we obtain the most likely co-regulating k miRNAs

cA possible variation is to further correct the counts n, z0, y1, and y2 for predicting noise of
TargetScanS. As noted earlier, TargetScanS has precision p = 58.3%. Thus if TargetScanS predicts
that Y1 has y′

1 targets, Y2 has y′
2 targets, Y1 and Y2 has z′0 common targets, and a total of n′

genes to be target of some miRNAs, we need to set y1 = py′
1, y2 = py′

2, z0 = p2z′0, and n = pn′.
This variation is better suited to the case of simultaneous co-regulation.
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from the predicted list of n miRNAs that target the gene X , by enumerating the
combinations of k miRNAs and picking the combination with the lowest p-value.

Step 3. Which are the genes that are most likely to be co-regulated by a given
group of miRNAs?

Given a group M of miRNAs obtained in Step 2 that are co-regulators of a gene
X , the list R′ of miRNA-gene pairs from Step 1.1 can be used to identify a set
GM = {X | for all Y ∈ M , (Y, X) ∈ R′} of all high-probability miRNA target
genes that are co-regulated by this co-regulating miRNA group M .

While each gene in GM has a probability of at least 99.9% of being the target
of some miRNA, it may not necessarily be a high probability target of all miRNAs
in M , due to the limitation of the statistics used in Step 1.1. Therefore, we propose
a separate p-value assessment of GM based on functional homogeneity.

We use Gene Ontology (GO)16 annotations to check the functional coherence of
gene groups. The more GO terms that are annotated to a gene group, the higher the
probability that the miRNAs co-regulate this gene group. To take into consideration
of hierarchical information of GO in this work, we use parent–child approach17,18

to evaluate homogeneity of co-regulated genes. The GO is a hierarchical scheme.
It is categorized into three name spaces: biological process (P), molecular function
(F), and cellular component (C). The universal term and three name space root
terms (GO:0003674, GO:0008150 and GO:000557) are not considered to evaluate
the coherence of the co-regulated gene groups.

Suppose GM = {X1, . . . , Xh} are predicted to form a co-regulated gene group.
Suppose the GO terms t1, . . . , tl are the GO terms used to annotate X1, . . . , Xh.
Suppose GO term t ∈ {t1, . . . , tl} is annotated to gene set V in human, while
t has parents tp1 , tp2 , . . . , which are annotated to gene sets utp1

, utp2
, . . . in human

as shown in Fig. 3. According to Ref. 18, we use the union of these genes as
population set U = utp1 ∪ utp2 ∪ · · · . Therefore the chance of t being anno-
tated to z0 genes in GM is given by the hypergeometric p-value pval(t, GM ) =∑

z≥z0

(
u
z

)(
u−z
v−z

)(
u−v
w−z

)
/
(
u
v

)(
u
w

)
, where u = |U |, v = |V | and w = |U ∩ GM |.

Fig. 3. Parent–child approach for validation of co-regulated target genes in terms of GO gene
annotations.
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As � informative GO terms are annotated to GM , we make a conservative Bon-
ferroni correction to the p-value above by multiplying it by �. We consider a gene
group GM to be functionally homogeneous if it has a sufficiently small Bonferroni-
corrected p-value. Then we propose (M, GM ) to be a co-regulation miRNA–gene
group pair. The Bonferroni-corrected p-value threshold is set to 0.01 in this work.

3. Results

We obtain target genes for human miRNAs using TargetScanS.3 miRNAs having
the same seed region are viewed as one family as they are considered to have the
same predicted target genes. In this work, each family is represented by one miRNA.
We collate the raw predictions from TargetScanS to a matrix whose columns are 162
miRNAs (miRNA families) and rows are 3227 genes; corresponding to the miRNA–
gene pair map R mentioned in the preamble of Sec. 2. A gene has an average of
4.9 regulating miRNAs. A miRNA, on average, regulates 98.9 genes. Every element
in the matrix represents the number of seed binding sites between corresponding
miRNA and gene. If the element is non-zero, the corresponding gene and miRNA
have regulatory association.

Figure 4 shows the frequency distribution of the number of the miRNAs that are
predicted to regulate a gene. The vertical axis represents the number of miRNA per
gene predicted by TargetScanS. The horizontal axis represents the number of genes.
More than half of the genes have 1, 2 or 3 miRNAs that are predicted to regulate
the genes. There are several exceptions. The nuclear factor I/B (NFIB) gene has
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the largest number of predicted regulating miRNAs (53 miRNAs). NFIB has 6562
nucleotides in its 3′UTR. As another example, the trinucleotide repeat containing
6B (TNRC6B) gene has 52 predicted miRNAs and its 3′UTR has 12,685 nucleotides.
In total, 19 genes have more than 30 predicted regulating miRNAs. And 445 genes
have more than 10 predicted miRNAs.

In Step 1.2 we derive the probability Pk,n for a gene to be a target for a group
of co-regulating miRNAs of size at least k if it is predicted to be the target of
n miRNAs by TargetScanS. We set a threshold of 99.9% for Pk,n and obtain the
largest value of k for each gene, from among the list of reliable miRNA target genes
computed in Step 1.2, that is predicted to be the target of n miRNAs by Tar-
getScanS. This k represents the largest number of miRNAs which co-regulate the
gene with high probability. Figure 5 shows the largest number of high probability
co-regulating miRNAs (vertical axis) versus the number of predicted miRNAs (hor-
izontal axis). As mentioned earlier, one gene (NFIB) is targeted by 53 predicted
miRNAs. Based on our calculation, this gene is co-regulated by at least 30 miRNAs
among the 53 predicted miRNAs with high probability. We enumerate all possible
combinations of 30 miRNAs from the 53 miRNAs and calculate their p-values, as
per Step 2, to identify the most likely 30 co-regulating miRNAs from the list of
53 miRNAs. The miRNA combination with the lowest p-value is considered to be
the real co-regulating miRNA group for the gene. We have also performed the same
analysis for other high probability genes. As this is a time-consuming task, we select
here only up to a maximum of 12 miRNAs for each gene.

Finally, as per Step 3, for each co-regulating miRNA group, we combine all the
target genes of the miRNAs in the group to find the genes that they co-regulate
in common. We get three co-regulating miRNA tables in terms of number of
co-regulating miRNAs. Altogether, we have identified 12 4+-term miRNA groups as
shown in Table 1. We have also identified 1−, 2− and 3-term miRNA groups whose
p-values are less than 0.01. These tables can be found in Supplementary Informa-
tion. Each group corresponds to one Excel Sheet. They have the same format as
shown in Table 1: 1st column is miRNA group, 2nd column is its target genes and
3rd column shows the p-value.

Fig. 5. A plot of argmaxkPk,n versus n.
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Table 1. Four-term miRNA and targeting gene groups.

MiRNA groups Gene groups p-value

miR-181,miR-27,miR-25/32/92/363/367,miR-30-5p NOVA1,CPEB4,QKI 3.59E-03
miR-144,miR-101,miR-27,miR-128 TNPO1,ARID2,FLRT3,RNF38 4.25E-03

MEIS2,NR5A2,PDS5B
CDH11,FBXW7,KBTBD8

miR-381,miR-15/16/195/424/497,miR-9,miR-30-5p CPEB3,RAP2C,CPEB2 8.19E-03
miR-144,miR-101,miR-19,miR-130/301 ATXN1,RNF38,ROBO2,ZEB2 1.16E-02

NEUROD1,BCL2L11,ERBB4
miR-381,miR-9,miR-25/32/92/363/367,miR-30-5p CPEB3,CPEB2,CPEB4 1.22E-02
miR-144,miR-101,miR-19,miR-25/32/92/363/367 RNF38,ROBO2,ZEB2,NLK 1.40E-02

PCDH10
miR-181,miR-9,miR-19,miR-25/32/92/363/367 CPEB4,DDX3X,RAP1B 2.62E-02

miR-181,miR-19,miR-25/32/92/363/367,miR-30-5p TNRC6B,CPEB4,RAP1B 2.62E-02
miR-144,miR-101,miR-27,miR-19 RNF111,RNF38,ZEB2,NLK 3.28E-02
miR-381,miR-144,miR-101,miR-27,miR-128 ZFHX3,MEIS2,NR5A2 4.62E-02
miR-144,miR-101,miR-27,miR-26 TNPO1,ARID2,DYRK1A 4.81E-02

NLK,KBTBD8
miR-144,miR-27,miR-128,miR-26 TNPO1,ARID2,ARFGEF1 4.81E-02

ANK2,KBTBD8

3.1. Can we find co-regulating miRNAs from shuffled miRNAs?

To observe how many co-regulating miRNA groups are generated by chance, we
artificially construct miRNAs that correspond to original miRNAs to see their
co-regulating miRNA groups. In this work, to keep nucleotide ingredient, we shuffle
all original miRNA sequences and pass them through miRNA prediction tool Tar-
getScanS. Then we use Gene Ontology to extract functional co-regulating miRNA
groups as described in Step 3.

We shuffle original 648 human miRNA sequences. TargetScanS takes these
sequences to find target genes from non-homolog genes. It is because if we do
not remove homolog genes, those genes become co-regulated by miRNAs due
to them having the same 3′UTRs. For example, genes PCDHA2, PCDHA3,
PCDHA4 , . . . ,PCDHA8 have the same 3’UTR sequences. Therefore, only one gene
PCDHA3 is left for the homolog group. The co-regulating miRNAs that have less
than 0.05 p-value are selected. We repeated the procedure 10 times. The compar-
isons of the number of selected co-regulating miRNA groups between shuffled and
original miRNAs are shown in Fig. 6. The ratio of the number of generated co-
regulating miRNAs from shuffled miRNAs to original miRNAs is very small. In 2,
3 and 4 miRNA combinations, the ratios are 0.28, 0.11 and 0.05 respectively, which
means the functional homogeneity of the groups of target genes from the shuffled
miRNAs is significantly less than the original miRNAs.

In order to keep the same number of total target genes, we shuffle miRNAs in
term of each gene to get randomized pairs of miRNA and target genes. This ran-
domization strategy was used in Ref. 19: the miRNAs and their target genes form a
matrix, whose rows and columns represent miRNAs and target genes, respectively.
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The shuffling is carried out in every column. That is, the regulating miRNAs are
randomly re-placed. The total number of regulating miRNAs for each gene is kept
unchanged, but the number of target genes for each miRNA is dramatically changed
as shown in Fig. 7. The average number of original target genes (blue bar) is reduced
as the number of terms of miRNAs increases. The average number of randomized
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target genes (green bar) is shown to be near normal distribution. The result is in
agreement with that of Ref. 19: genes are mainly co-regulated by 3, 4, 5 miRNA
combinations. Yellow/magenta bars represents the number of highly probable orig-
inal/randomized targets in term-1, 2, . . . using GO evaluation method of Step 3.
We can see that there is no highly probable randomized targets (magenta bar)
at all. It means that we cannot find any co-regulating miRNAs from randomized
target genes.

4. Discussion

Functionally related genes are usually regulated by a group of miRNAs instead of
one miRNA. For example, breast cancer genes are regulated by 29 miRNAs.20 It is a
challenging task to find all genes that are related to a particular disease.21–23 Recent
research has demonstrated that many miRNAs are related to several diseases.24

Finding a group of miRNAs that regulate functionally related genes is one of the
key issues in the miRNA field.

Current miRNA target prediction tools have the common problem that their
false positive rate is quite high.2,3 This complicates reliable identification of co-
regulating groups of miRNAs and target genes. In this study, we attempt to find
highly probable co-regulating miRNAs and the corresponding co-regulated gene
groups. We derived, based on the signal-to-noise ratio of TargetScanS, the minimum
number of miRNAs that are predicted by TargetScanS to target a gene in order
for that gene to have at least 99.9% probability of being regulated by a miRNA.
Specifically, when a gene is predicted by TargetScanS to have five or more regulating
miRNAs, then there is at least 99.9% probability that at least one of the miRNAs is
really regulating the gene, even though we cannot pinpoint the exact miRNA that
regulates the gene. We have also developed a sequence of hypergeometric p-values
that allow us to rank combinations of miRNAs that are likely to co-regulate a given
gene. Since experimental identification of miRNA target is still in the infant stage,
providing such high probability miRNA-targets information should be helpful to
the biologists.

Recent studies show that some genes are regulated by many miRNAs, while some
genes may not be regulated by any miRNA. For example, hub proteins have more
regulating miRNAs than other proteins.25 To validate the identified co-regulating
miRNAs and their corresponding co-regulated gene groups, we check whether the
co-regulated genes have coherent GO term annotations.12 In this work, we filter
out miRNA groups if their co-regulated gene groups have p-values larger than 0.01.

Table 1 shows the 4+-term co-regulating miRNA groups. (The 1-, 2- and
3- term miRNA groups can be found in Supplementary Information). These tables
are useful to suggest some hypothesis on the functional role of several miRNAs,
through a “guilt by association” reasoning similar to that of genome phylogenetic
profiling.15 For example:

Hsa-miR-144, hsa-miR-101, hsa-miR-19 and hsa-miR-130/301 have similar
co-regulated gene groups. They co-regulate seven genes: “ATXN1”, “BNF38”,
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Fig. 8. The distribution of p-values for 4-term miRNA groups.

“ROBO2”, “ZEB2”, “NEUROD1”, “BCL2L11”, “ERBB4”. Its p-value is 1.16 ×
10−2. The co-regulation is related to GO:0005515 (protein binding) domain. hsa-
miR-101, hsa-miR-130 and hsa-miR-19 have been validated to co-regulate neurode-
generative diseases related gene “ATXN1”.26 In Lee et al. paper,26 three miRNAs
hsa-miR-130/19/101 are confirmed to be co-regulating with gene ATXN1, but our
approach found the 4th miRNA hsa-miR-144 co-regulating hsa-miR-130/19/101. It
suggests that hsa-miR-144 is another co-regulating miRNA for gene ATXN1. It is
notable that if all co-regulating miRNAs are co-expressed, the target genes will be
suppressed heavily. Otherwise, the target genes cannot be inhibited effectively.

Figure 8 shows the histogram of p-values for 4-term co-regulating miRNA
groups. The two miRNA groups mentioned have the smallest p-values in all 4-term
miRNA groups.

5. Conclusions

In this work, a statistic approach has been proposed to reduce the number of
miRNAs that are regulating a specific gene. Some identified co-regulating miR-
NAs are supported by biological literature. The main reason may be that Gene
Ontology has been used for evaluation, because miRNAs usually inhibit genes in
protein level; Gene Ontology annotation is based on UniProt (Universal Protein
Resource) Knowledgebase.16

From the predicted result by TargetScanS, we found highly probable
co-regulating miRNA groups in terms of the number of miRNAs: 65 (1-term); 193
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(2-term); 97 (3-term) and 12 (4+-term). For given genes, we can find a very small
candidate set of co-regulating miRNAs. It significantly reduces labor and financial
cost to inhibit the genes of interest.
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