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a b s t r a c t

Microarray data provides quantitative information about the transcription profile of cells. To ana-
lyze microarray datasets, methodology of machine learning has increasingly attracted bioinformatics
researchers. Some approaches of machine learning are widely used to classify and mine biological datasets.
However, many gene expression datasets are extremely high dimensionality, traditional machine learning
methods cannot be applied effectively and efficiently. This paper proposes a robust algorithm to find out
rule groups to classify gene expression datasets. Unlike the most classification algorithms, which select
Microarray data analysis
Classification

dimensions (genes) heuristically to form rules groups to identify classes such as cancerous and normal
tissues, our algorithm guarantees finding out best-k dimensions (genes) to form rule groups for the clas-
sification of expression datasets. Our experiments show that the rule groups obtained by our algorithm
have higher accuracy than that of other classification approaches.
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. Introduction

Mining gene expression datasets has generated interest among
any bioinformatics researchers (Alon et al., 1999; Chen et al.,

007; Knapp and Chen, 2007; Mann et al., 2007; Mramor et al.,
007). One of the important trends in bioinformatics is identifica-
ion of genes or groups of gene to differentiate diseased tissues from
ormal tissues. Classification of tissues into cancerous and normal
issues using the identified genes is one of the key problems being
aced in bioinformatics. Golub (Golub et al., 1999) firstly showed
he better diagnostic performance of gene expression signatures
n acute leukemia classification compared to other currently used
iagnostic method. Many other studies (Bhattacharjee et al., 2001;
han et al., 2001; Shipp et al., 2002) have been undertaken in
lmost all cancer types. Recently, a wide range of statistical and
achine learning methods for microarray data analysis developed
Allison et al., 2006; Nahar et al., 2007; Asyali et al., 2006; Pham
t al., 2006). Since the particularity of microarray data, i.e. high
umber of genes and small number of samples, it becomes a hard
ask to find accurate patterns to classify microarray data. This
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aper attempts to find rule groups for several different cancer-
us datasets. The results are encouraging in terms of accuracy and
ffectiveness.

Gene expression data is usually represented as a matrix; each
lement in the matrix represents an appearance level of a par-
icular gene under a particular condition. We assume that a gene
xpression matrix has n rows and m columns. The rows represent
amples that are divided into different classes such as cancerous
issue and normal tissue. The columns represent genes whose num-
er is usually more than several thousands. The number of rows

s much lower than that of columns as the sample used ranges
rom ten to several hundreds. To cope with this kind of extremely
igh dimensional data, traditional machine learning techniques
uch as decision tree and support virtual machine, cannot classify
ffectively as they use heuristics to select significant dimensions
genes); many discriminative dimensions can be left out. In this
aper, we propose a classification method that generates rule
roups to categorize samples. A rule is a conjunction of several
imensions (genes); each gene is constrained into one interval. For
xample, (gene1 > 120.5) ∧ (gene2 ≤ 20.3) is one such rule. If a sam-
le satisfies the conjunction of a rule, it will be covered by the rule.
he above rule covers samples whose expression values of gene1
re larger than 120.5 and expression values of gene2 are smaller

han or equal to 20.3. In contrast to traditional machine learning
lgorithms that use heuristics our method guarantees finding out
est-k genes which are most discriminative to classify samples in
ifferent classes, to form rule groups. The value of parameter k is
et to around 5. It is based on the fact that each rule should not
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e too long from the principle of Occam’s razor (Mitchell, 1997);
therwise, the problem of overfitting will arise (Quinlan, 1986).

. Approach

A rule group is associated with a target class as different classes
ave different rule groups that reflect the common characters for
he classes. The samples that belong to the target class are treated
s positive samples, and the samples that belong to other classes
re treated as negative samples throughout this paper. For the sake
f consistency, we treat dimensions as columns (or genes) in gene
xpression matrix.

Rule groups reveal biological relationship between cellular func-
ion and group genes. In this paper, a rule has the form: LHS ⇒ C,
here C represents the consequence of the rule. It is a class label

uch as cancerous and normal tissues. LHS represents the condition
f the rule. It is a conjunction of items; that is, intersection of dif-
erent items. Each item in the conjunction is represented as (g, i),
here g is a gene (dimension) number; i is an interval where the

ene expression value of g belongs to. For example, interval (−∞,
23.5] includes all real number less than 123.5. The conjunction is
ormed from items to represent the condition of a rule; that is, (g1,
1) ∩ (g2, i2) ∩ . . ., where the gene gi and interval ii appear as a pair.
he item (gi, ii) means that gene expression level of gi is the range
f interval ii. Fig. 1 summarizes the terminologies that are used in
ule group.

A rule can be viewed as a subspace that covers the samples

hose gene expression values satisfy the condition in the rule. In

eneral, one rule cannot cover all positive samples such as a can-
erous tissue. So a rule group that consists of more than one rule
s needed to cover all samples of a target class. Many rule genera-
ion methods such as decision tree (Quinlan, 1986; An et al., 2005),

2

i

Fig. 2. An example to find the rul
Fig. 1. The relationship of notations for rule group.

VM (Mitchell, 1997), and CN (Clark and Boswell, 1991), have been
roposed These methods select discriminative features heuristi-
ally to describe common characters of a specific class. As they
annot effectively select high discriminative dimensions for high
imensional (features) datasets, a more robust algorithm has been
roposed (An and Chen, 2005). This method enumerates all pos-
ible combinations of genes and pruning power is used to remove
nrelated combinations from exponentially increasing enumerated
ombinations. This method guarantees finding out a rule that can
over the largest number of samples of a specific class. But it is a
ostly process. In this paper, we propose a new robust algorithm
hat can deal with very high dimensional data effectively without
ny loss of accuracy. Section 2.1 gives an example to find a rule
roup for a specific class. Describes constraint to avoid overfitting.
.1. An Example to Find Rule Group

According to the principal of Occam’s razor, simplicity is an
mportant criterion for evaluation of the generated rule groups:

e group to describe class 1.
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1) the number of rules should be small; (2) the condition LHS
hould be short. From the first point, it is desirable to find sub-
paces that cover as more positive samples as possible. As a result,
he number of rules in the rule group becomes smaller. The second
oint demands fewer dimensions (genes) to form the condition of
rule. Based on the two points, we propose an enumeration-based
lgorithm to find rule groups for a specific class. Only if always
ig. 2 shows an example to find the rule group to describe class 1.
here are five samples out of which three are positive samples and
wo are negative samples. Different genes have different intervals:
xpression values of gene1 have two intervals ‘A’ and ‘B’ as showing
ig. 2(A); expression values of gene2 and gene3 have ‘C’, ‘D’ and ‘E’, ‘F’
ntervals, respectively. The original expression values are real num-
ers. Therefore, expression values have been discretized. It will be
xplained in the next section.

All items are enumerated to find out the rule group for class 1.
he numbers of positive and negative samples covered by these
tems are calculated. The two numbers become primary and sec-
ndary keys to sort out these items as shown in Fig. 2(B). The rows
f the table are sorted out in a descending order of the primary
ey and ascending order of the secondary key. The first item (gene3,

E’) becomes a rule, because it covers more positive samples than
ny other items, and it does not cover any negative samples. In
his example, we assume that the confidence of rule is 100%; that
s, every sample that satisfies the condition of a rule constantly
elongs to the consequence (class) of the rule. To find out more
ules that cover the rest of positive samples, the samples covered
y the first rule are removed as shown in Fig. 2(C): the samples 1 and
are then removed. This process is repeated until all positive sam-
les are removed. Fig. 2(D) shows the sorted items for the next rule.

n Fig. 2(D), we cannot find any item that covers only positive sam-
les. That is, we cannot find 1-gene condition rule; therefore, we
ave to combine 2 genes to find 2-gene condition rule to describe
lass 1. From Fig. 2(E), we can find the second rule: (gene1 = ‘B’) &&
gene2 = ‘C’) ⇒ class 1. It covers one positive sample and does not
over any negative sample. After the removal of all items covered
y the second rule, no positive samples are left out. The process of
enerating rule groups is finally terminated.

In general, if all positive samples are covered by a rule, many
tems are needed to form a condition of the rule. However, it may
ead to overfitting problem (Quinlan, 1986; Mitchell, 1997).

. Methods

Our algorithm enumerates all possible combinations of items to
nd rule group to describe a specific class. Like most rule genera-
ion algorithms, the gene expression data is discretized to symbols.
he dimensionality of gene expression data is usually very high;
ow discriminative genes are removed in the preprocessor of our
lgorithm.

.1. Discretization and Dimension Reduction

Most of the association rule algorithms use symbol data. Many
iscretization methods have been proposed such as principal of
omponents analysis, �2-based algorithm, etc. Entropy-based tech-
ique is considered effectively method to discretize continuous
ttribute values (Fayyad and Irani, 1993). After discretization, all
alues in gene expression matrix are converted into symbols. Mean-

hile, dimensions with small entropy gain are removed. In our
ork, the discretization and dimension selection are combined

ogether to prepare data.
As regards discretization, finding cutting points in continu-

us attribute values is very crucial. The cutting points are usually

t
c
n

(

Fig. 3. Entropy-based discretization and dimension selection.

ssumed in the middle of every two contiguous attribute values
Fayyad and Irani, 1993; Yang and Pedersen, 1997). The cutting
oint that has largest information gain is used to separate intervals
eeded for discretization. This process is repeated recursively until

nformation gain is greater than the minimal description length as
iven in the following equation:

ain >
log2(N − 1)

N
+ log2(3k − 2) − kE + k1E1 + k2E2

N
(1)

here N is the number of samples, k is the number of classes, and E
s the entropy of the whole set of samples. The entropy of the sam-
les in left and right hands are E1 and E2, respectively; the number
f classes in left and right hands are k1 and k2, respectively. It is to
e noted that the right side of Eq. (1) represents minimal descrip-
ion length. The algorithm used to discretize continuous attribute
alues and select discriminatory dimensions, is shown in Fig. 3. The
teps involved in this algorithm are given below: (1) attribute val-
es in each dimension are sorted out as given in line 4. (2) Find
ut the best cutting point as in line 5. (3) Put the pair of dimension
umber and cutting point in the result Rset, if Eq. (1) is satisfied. (4)
dimension is separated into two parts by its best cutting point. In

he left and right sides, it is repeated to find out best cutting point
ntil Eq. (1) is not satisfied as in lines 6–9. (5) Select the best nc
oints from the best cutting points as in line 12. When the number
f cutting points in one dimension from Rset, is more than 1, the
ollowing strategy should be considered: if the first cutting point
oes not get selected in the final result, the second cutting point is

gnored even if its information gain is the largest. It is due to the
act that the information gain of second cutting point is based on
he first cutting point.

.2. Implementation

To find the rule group to describe a specific class, the support and
onfidence are decided similar to Aprior-like algorithm. For a rule
: LHS ⇒ C. support (r) = support(LHS ∪ C); confidence (r) = support
r)/support (LHS). In Fig. 2, we set the support threshold = 1; con-
dence threshold = 100%, which is the strictest condition. In real
atasets, we usually set loose thresholds for support and confi-
ence. In our experiments, we set the threshold of support as five
ercent of the total number of samples, the threshold of confi-
ence is set to one hundred percent. Support and confidence are
wo parameters of the algorithm. The maximum number of items
n the condition of a rule is another important parameter. As men-

ioned earlier, the number of items cannot be large to reflect the
ommon character of a specific class. In our experiment, the largest
umber of items of condition is set to four.

To enumerate all possible items, the concept of candidate group
Bayardo, 1998) is employed. Each candidate group consists of two



J. An, Y.-P.P. Chen / Computational Biology and Chemistry 33 (2009) 108–113 111

Fig. 4. Enumeration of a
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candidate groups CForCheck are checked whether the combination
Fig. 5. The data structure of candidate group.

arts, namely, Head and Tail. Head is denoted as h(g) and Tail is
enoted as t(g), where g represents a candidate group. The set enu-
eration tree (Rymon, 1992) is used to generate all possible items.

ig. 4 shows an example to enumerate all possible items. For the
ack of simplicity, we only list the dimensions: d1, d2 and d3. The
ntervals are omitted.

The Head of root candidate group is empty and its Tail consists of
ll items as shown in Fig. 4. The branch candidate groups are grown
y moving the items from Tail to Head one by one. All the leaf candi-
ate groups have empty Tail. The Heads in all leaf candidate groups
re all possible items: {d1}, {d2}, {d3}, {d1, d2}, {d1, d3}, {d2, d3},
d1, d2, d3}. Each node has two branches: the first one is generated
y removing the first item in the Tail of the node; the second one is

enerated by moving the first item from Tail to Head. For example, a
ode h(g):{d1, d2,. . .}, t(g):{di,di+1,. . .} has two branches h(g1):{d1,
2,. . .}, t(g1):{di+1,. . .} and h(g2):{d1, d2,. . ., di}, t(g2):{di+1,. . .}. To
epresent intervals of a candidate group, a new data structure is

o
s
i
t

Fig. 6. Main alg
ll possible items.

eeded as shown (Fig. 5). In, d1 is a number and represents a dimen-
ion; i1 is an interval of dimension d1. In the Head portion, each
imension is followed by an interval. On the other hand, for the
ail portion, a dimension may be followed more than one interval.
or example, an item “3 A C” means gene3 = ‘A’ or ‘C’. Fig. 6 illus-
rates the main algorithm to generate a rule group. The threshold
f support, TsdS represents the minimum number of positive sam-
les that are covered by a rule. The threshold of confidence, Tsdc

s the maximum confidence of a rule. The maximum positive cov-
rage maxCover is initialized zero. When a rule is found, maxCover
ecomes the number of positive samples that are covered by the
ule. The candidate group is initialized as C in line 8–9. We use a
ery simple gene dataset as shown in Fig. 2 to illustrate initializa-
ion. The gene dataset has only three dimensions, namely, gene1,
ene2 and gene3. Each dimension has two intervals such as ‘A’ and

B’. The Head and Tail are initialized as {} and {{1 A B}}, {2 C D}, {3 E
}}. The {1 A B} means dimension1 or gene1 that has two intervals:

A’ and ‘B’.
The items are added to Head to accommodate a dimension from

ail as shown in lines from 11 to 18 of Fig. 6. First, the new generated
f Head with every item in Tail covers more than maxCover positive
amples. Second, candidate groups are sorted out in the descend-
ng order of the number of positive samples that are covered by
he Head of candidate groups as shown in Fig. 8(A). Third, if the

orithm.
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Table 1
Gene expression datasets

Dataset # samples # genes Class 1 Class 2

Label # Label #

ALL 72 7129 ALL 47 AML 25
BC 97 24481 Relapse 46 Non-relapse 51
CT 62 2000 Negative 40 Positive 22
LC 181 12533 ADCA 150 Mesothelioma 31
PC 136 12600 Tumor 77 Normal 59

Table 2
Comparison with decision tree and support virtual machine

Target class Decision tree (%) SVM (%) Our method (%)

ALL ALL 86.11 92.22 100.0
BC Relapse 58.76 65.98 93.00
CT Negative 75.80 83.87 91.43
L
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Fig. 7. Check candidate groups.

andidate is empty, the rule is found. Fourth, the candidate group
hat has the largest positive coverage is chosen to expand its Head.
t is expanded into two candidate groups as shown in Fig. 8(B).
or example, a candidate group with h(g) = {{1 ‘A’}} and t(g) = {{2
C’}, {3 ‘E’}} is expanded to h(g1) = {{1, ‘A’}}, t(g1) = {{3 ‘E’}} and
(g2) = {{1, ‘A’}, {2 ‘C’}}, t(g2) = {{3 ‘E’}}. The rule candidates are
aved in a variable F. The last candidate is a rule. To find the next
ule, the samples covered by the first rule are removed. If the rule
atisfies support threshold, it is put into a rule group. The function
alled chkFrequncy can be found in line 13 of Fig. 7. It checks for the
onditions as to whether the combination of Head with every item
n Tail covers more that maxCover positive samples as detailed in
ig. 8. An item in Tail can be pruned, if its combination with Head
oes not cover more than maxCover positive samples. As a result,
he most of nodes in Fig. 4 can be pruned out.

In the function sortbyMaxPosSupport as shown in Fig. 8(A), if a
ode or candidate group has empty Tail, it is removed. The combi-
ations of items that satisfy thresholds of support and confidence
ave been put in F as candidates of rules. To find the rule that covers
ore positive samples fast, all candidate groups are sorted out in

he descending order of the number of positive samples and in the
scending order of the number of negative samples. The candidate
roup that has biggest number of positive samples is selected to
xpand in the function called GenSubNode of Fig. 8(B). The expanded
andidate groups are returned.

. Experiment

We test our algorithm with widely used five gene datasets: ALL-

ML leukemia (ALL), breast cancer (BC), colon tumor (CT), lung
ancer (LC) and prostate cancer (PC). The rows of the datasets
epresent clinical samples; the columns represent the gene expres-
ion values, which is real data illustrating gene expression level

o
i
b
a

Fig. 8. Generation of sub-node an
C ADCA 90.60 99.45 100.0
C Tumor 78.68 91.18 87.14

verage 74.77 86.54 94.31

f a specific gene for a sample. There are two classes of samples
n these datasets. The datasets can be found at http://sdmc.i2r.a-
tar.edu.sg/rp.

Table 1 shows the information of these five datasets: the num-
er of samples (# samples), the number of genes (# genes), and
wo classes labels and the number of samples in the two classes.
ll experiments presented here use the class 1 as consequence in
ule group. The minimum support is set to 5 percent of the num-
er of samples. For example, ALL dataset has 2 (47 × 5%) samples
inimum support. Confidence is set to percentage of total number

f samples. The maximum number of items for a condition is set
o 6. In the preprocessor, all gene expression values are discretized
nto symbols: ‘0’ and ‘1’; the number of dimensions of these five
atasets has been reduced to 30 by using entropy-based algorithm.

Our method is compared with decision tree and support vir-
ual machine, which are considered effective methods to deal with
igh dimensional datasets. Table 2 illustrates the percentages of
orrectly predicted test data for three methods. We employ the
enfold cross-validation to evaluate their accuracy. The details of
ule groups for these five datasets can be in http://www.deakin.
du.au/∼phoebe/CBACAnChen/microarray classification.html. Our
ethod has high accuracy as compared to other two methods.
Table 3 shows the statistical data of rule groups for these five

atasets. The number of rules per rule group reflects the complex

f the datasets. The more the number of rules for each rule group
s, the more the difficulty the dataset is described by rules. It can
e used to explain that the prostate cancer (PC) dataset has low
ccuracy. An important element for rule group is average support

d sort of candidate group.

http://sdmc.i2r.a-star.edu.sg/rp
http://www.deakin.edu.au/~phoebe/CBACAnChen/microarray_classification.html
http://www.deakin.edu.au/~phoebe/CBACAnChen/microarray_classification.html
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Table 3
The average support

Average # rules/per
rule group

Average # items/per
condition

Average support/per
rule (%)

ALL 2 1.5 79.47
B
C
L
P
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A

A

A

A

B

B

C

C

F

G

K

K

M

M
M

N

P

Q
R

C 4.7 3.7 32.38
T 3.4 2.8 46.40
C 1 4 100
C 6.2 3.35 18.02

er rule. It is desirable that every rule has large coverage. A rule that
as a large support reflects the common character of the dataset.
or example, the lung cancer (LC) dataset has 100% support for each
ule. It means every generated rule reflects the common character
or a specific class.

. Conclusion

In this paper, we propose a robust algorithm to find out
ule groups that describe a specific class in high dimensional
ene expression datasets. Our algorithm enumerates all possible
ombinations of dimensions. By introducing pruning power and
onstraint of the number of items, the procedures can be executed
fficiently in any personal computer. The algorithm guarantees
nding out best-k rules for a specific class data; the predictive accu-
acy is found to be better than that of the state of art methods.
uture research may involve clarifying the properties of constant
in “best-k rules”, and searching for a more systematic method of
etermining the constant k.
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